Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 67: 105146, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32371349

RESUMO

This study reports the sonochemical synthesis of samarium tungstate nanoparticles (SWNPs) for applications in electrochemical sensors. The synthesis process is based on a precipitation reaction, which was investigated by ultrasound and compared with the effect of stirring. A bath sonicator operated at a frequency and power of 37/100 kHz and ~60 W, respectively, was employed to prepare the material. The shock waves efficiently irradiated the reaction conditions as much as possible, resulting in the good crystallinity of the monoclinic phase of the SWNPs, which was confirmed by XRD analysis. The surface morphology and structural composition was further evaluated by HRTEM, EDS and XPS. The good crystallinity and uniform distribution of elements in the nanoparticles were confirmed. The performance of the SWNPs to electrochemically sense nilutamide (NLT) was studied, which revealed a good electrochemical signal. As a result, the SWNPs were applied to an electrode material for the detection of NLT. This study revealed the excellent activity of the SWNPs for NLT detection, resulting in a low detection limit (0.0026 µM) and good linear range (0.05-318 µM). Furthermore, the results show appreciable analytical performances, which could be applied to electrochemical anti-androgen drug nilutamide sensors.

2.
Ultrason Sonochem ; 64: 105014, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32078909

RESUMO

This work described the sonohydrolysis of Bi(NO3)3 into Bi2O3 and simultaneous sonochemical exfoliation of graphite into graphene sheets in the alkaline environment and its electocatalytic performance towards the detection of anti-depression drug imipramine (IMPR). The ultrasound (37/80 kHz; 60 W) effectively hydrolyzed the Bi(NO3)3 into a single crystalline monoclinic phase of Bi2O3 nanotiles in the alkaline condition. And also, the sonochemical reaction condition can trigger the lamellar particles on the graphite bulk surface and allowed to exfoliated the graphite (EG) into graphene nanosheets as well. The material characterizations are done by XRD, Raman, FESEM, and HRTEM. It shows the α-Bi2O3 nanotiles along with EG nanosheets with high crystallinity and low defects. The (0 0 2) plane in XRD confirms the high crystalline nature of EG. The monoclinic stretching vibrations (90-600 cm-1) confirms the Raman modes of Bi2O3. The prepared Bi2O3-EG composites are subjected to the electrochemical determination of IMPR which revealed appreciable analytical performances. The results showed that the Bi2O3-EG exhibits better results in the 3 h sonication process. Bi2O3-EG-3 exhibited a good linear range (0.02-82.3 µM) and an acceptable limit of detection (6 nM). And also Bi2O3-EG-3 exhibits the significant tolerance limit when compared to other potential interfering compounds.

3.
Ultrason Sonochem ; 59: 104720, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31479887

RESUMO

This work reports the sonochemical exfoliation of graphite (bath sonication with the frequency of 37/80 kHz and power of 60 W) and its electrocatalytic properties to the ß-blocker drug. The pencil graphite (PG) was exfoliated by the ultrasound emulsification with the support of ethyl cellulose (EC). Herein, EC act as an emulsifier which aids to the exfoliation and also stabilizing the exfoliated graphite. This EC assisted PG (ECPG) was characterized by various analytical techniques which showed that ECPG has high crystalline graphene sheets. In some places, EC submerged to the graphene sheets which improve the dispersibility of graphene in water. The performance of ECPG was evaluated to the electrocatalysis of acebutolol (ACE) which exhibited good electrochemical signal. Therefore, the ECPG was utilized to the detection of ACE as the electrochemical sensor electrode. It showed notable sensitivity (2.87 µA µM-1 cm-2) appreciable linear range (0.01-200 µM) and satisfactory detection limit (4 nM). Furthermore, it displays acceptable anti-interference properties with other interfering ions.

4.
Ultrason Sonochem ; 58: 104647, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450323

RESUMO

In this work, lanthanum tungstate (La2(WO4)3) nanoparticles (NPs) were synthesized by facile sonochemical method (elmasonic P, under-sonication 37/100 kHz, ~60 W energy) and utilized as an electrode material for the selective and sensitive electrochemical determination of anti-scald inhibitor diphenylamine (DPA). The synthesized La2(WO4)3 NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDAX), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The results revealed that the sonochemically synthesized La2(WO4)3 nanoparticles were with high crystallinity and uniformly distributed nanoparticles like structure. The as-prepared lanthanum tungstate NPs exhibited an excellent electrocatalytic behavior for DPA determination with the lowest detection limit of 0.0024 µM, wide linear range response of 0.01-58.06 µM and a remarkable sensitivity of 1.021 µA µM-1 cm-2. Furthermore, La2(WO4)3 NPs showed a good recovery to DPA in apple juice sample. Besides, the electrochemical mechanism of the DPA oxidation reaction was provided in detail.

5.
Ultrason Sonochem ; 53: 44-54, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30559078

RESUMO

In this work, strontium cerate nanoparticles (SrCeO3 NPs, SC NPs) were developed through facile synthetic techniques (Ultrasound-Assisted (UA) and Stirring-Assisted (SA) synthesis) and utilized as an electrocatalyst for the selective and sensitive electrochemical detection of calcium channel blocker nifedipine (NDF). The as-prepared UASC NPs and SASC NPs were characterized using XRD, Raman, TEM, EDS, mapping, XPS and BET analysis which exposed the formation of SC NPs in the form of spherical in shape and well crystalline in nature. BET studies reveal that UASC NPs have maximum surface area than that of SASC NPs. Further, the use of the as-developed UASC NPs and SASC NPs as an electrocatalyst for the detection of NDF. Interestingly, the UASC NPs modified screen printed carbon electrode (UASC NPs/SPCE) exhibited an excellent electrocatalytic activity in terms of lower reduction potential and enhanced reduction peak current when compared to SASC NPs and unmodified SPCE. Moreover, as-prepared UASC NPs/SPCE displayed wide linear response range (LR, 0.02-174 µM), lower detection limit (LOD, 5 nM) and good sensitivity (1.31 µA µM-1 cm-2) than that of SASC NPs (LR = 0.02-157 µM, LOD = 6.4 nM, sensitivity - 1.27 µA µM-1cm-2). Furthermore, UASC NPs/SPCE showed an excellent selectivity even in the existence of potentially co-interfering compounds such as similar functional group containing drugs, pollutants, biological substances and some common cations/anions. The developed sensor was successfully employed for the determination of NDF in real lake water, commercial NDF tablet and urine samples with acceptable recovery.


Assuntos
Bloqueadores dos Canais de Cálcio/análise , Limite de Detecção , Nanopartículas/química , Nifedipino/análise , Óxidos/química , Óxidos/síntese química , Sonicação , Bloqueadores dos Canais de Cálcio/química , Catálise , Técnicas de Química Sintética , Eletroquímica , Eletrodos , Nifedipino/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...